Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 294(24): 9367-9376, 2019 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-31043481

RESUMO

The biological route for nitrogen gas entering the biosphere is reduction to ammonia by the nitrogenase enzyme, which is inactivated by oxygen. Three types of nitrogenase exist, the least-studied of which is the iron-only nitrogenase. The Anf3 protein in the bacterium Rhodobacter capsulatus is essential for diazotrophic (i.e. nitrogen-fixing) growth with the iron-only nitrogenase, but its enzymatic activity and function are unknown. Here, we biochemically and structurally characterize Anf3 from the model diazotrophic bacterium Azotobacter vinelandii Determining the Anf3 crystal structure to atomic resolution, we observed that it is a dimeric flavocytochrome with an unusually close interaction between the heme and the FAD cofactors. Measuring the reduction potentials by spectroelectrochemical redox titration, we observed values of -420 ± 10 and -330 ± 10 mV for the two FAD potentials and -340 ± 1 mV for the heme. We further show that Anf3 accepts electrons from spinach ferredoxin and that Anf3 consumes oxygen without generating superoxide or hydrogen peroxide. We predict that Anf3 protects the iron-only nitrogenase from oxygen inactivation by functioning as an oxidase in respiratory protection, with flavodoxin or ferredoxin as the physiological electron donors.


Assuntos
Azotobacter vinelandii/enzimologia , Proteínas de Bactérias/metabolismo , Ferro/metabolismo , Nitrogênio/metabolismo , Oxirredutases/metabolismo , Oxigênio/metabolismo , Proteínas de Bactérias/química , Cristalografia por Raios X , Fixação de Nitrogênio , Oxirredução , Oxirredutases/química , Conformação Proteica
2.
Transl Oncol ; 12(5): 714-725, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30856556

RESUMO

Survival of epithelial ovarian cancer patients remains poor without significant change over many decades. There is a need to better identify women at high risk (HR) for ovarian cancer. We propose that miRNA dysregulation may play critical roles in the early stages of ovarian cancer development. Circulating miRNAs may represent an important biomarker in this context, and miRNA profiling of serum in women at HR compared to those at low risk (LR) may give insights in tumor initiation pathways. There is also rationale for a specific focus on regulation of the androgen and its related hypoxia pathways in tumor initiation. We hypothesized that subsets of these pathway related miRNAs may be downregulated in the HR state. Serum from four HR and five LR women were sequenced and analyzed for 2083 miRNAs. We found 137 miRNAs dysregulated between the HR and LR groups, of which 36 miRNAs were overexpressed in HR and the vast majority (101 miRNAs or 74%) downregulated in the HR, when compared to LR serum. mRNA targets for the differentially expressed miRNAs were analyzed from three different miRNA-mRNA interaction resources. Functional association analysis of hypoxia and androgen pathway mRNA targets of dysregulated miRNAs in HR serum revealed that all but one of the miRNAs that target 52 hypoxia genes were downregulated in HR compared to LR serum. Androgen pathway analysis also had a similar expression pattern where all but one of the miRNAs that target these 135 identified genes were downregulated in HR serum. Overall, there were 91 differentially expressed miRNA-mRNA pairings in the hypoxia analysis. In the androgen-related analysis, overall, there were 429 differentially expressed miRNA-mRNA pairs. Our pilot study suggests that almost all miRNAs that are conserved and/or validated are downregulated in the HR compared to LR serum. This study, which requires validation, suggests that, via miRNA dysregulation, involvement of both hypoxia and its related androgen pathways may contribute to the HR state. This pilot study is the first report to our knowledge that studies circulating miRNA profiling of HR and LR women.

3.
Open Biol ; 8(1)2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29367351

RESUMO

In oxidative phosphorylation, ATP synthases interconvert two forms of free energy: they are driven by the proton-motive force across an energy-transducing membrane to synthesize ATP and displace the ADP/ATP ratio from equilibrium. For thermodynamically efficient energy conversion they must be reversible catalysts. However, in many species ATP synthases are unidirectional catalysts (their rates of ATP hydrolysis are negligible), and in others mechanisms have evolved to regulate or minimize hydrolysis. Unidirectional catalysis by Paracoccus denitrificans ATP synthase has been attributed to its unique ζ subunit, which is structurally analogous to the mammalian inhibitor protein IF1 Here, we used homologous recombination to delete the ζ subunit from the P. denitrificans genome, and compared ATP synthesis and hydrolysis by the wild-type and knockout enzymes in inverted membrane vesicles and the F1-ATPase subcomplex. ATP synthesis was not affected by loss of the ζ subunit, and the rate of ATP hydrolysis increased by less than twofold, remaining negligible in comparison with the rates of the Escherichia coli and mammalian enzymes. Therefore, deleting the P. denitrificans ζ subunit is not sufficient to activate ATP hydrolysis. We close by considering our conclusions in the light of reversible catalysis and regulation in ATP synthase enzymes.


Assuntos
Proteínas de Bactérias/metabolismo , Paracoccus denitrificans/enzimologia , ATPases Translocadoras de Prótons/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Deleção de Genes , Hidrólise , Paracoccus denitrificans/genética , Domínios Proteicos , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , ATPases Translocadoras de Prótons/química , ATPases Translocadoras de Prótons/genética
4.
J Biol Chem ; 292(12): 4987-4995, 2017 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-28174301

RESUMO

Respiratory complex I couples electron transfer between NADH and ubiquinone to proton translocation across an energy-transducing membrane to support the proton-motive force that drives ATP synthesis. The proton-pumping stoichiometry of complex I (i.e. the number of protons pumped for each two electrons transferred) underpins all mechanistic proposals. However, it remains controversial and has not been determined for any of the bacterial enzymes that are exploited as model systems for the mammalian enzyme. Here, we describe a simple method for determining the proton-pumping stoichiometry of complex I in inverted membrane vesicles under steady-state ADP-phosphorylating conditions. Our method exploits the rate of ATP synthesis, driven by oxidation of NADH or succinate with different sections of the respiratory chain engaged in catalysis as a proxy for the rate of proton translocation and determines the stoichiometry of complex I by reference to the known stoichiometries of complexes III and IV. Using vesicles prepared from mammalian mitochondria (from Bos taurus) and from the bacterium Paracoccus denitrificans, we show that four protons are pumped for every two electrons transferred in both cases. By confirming the four-proton stoichiometry for mammalian complex I and, for the first time, demonstrating the same value for a bacterial complex, we establish the utility of P. denitrificans complex I as a model system for the mammalian enzyme. P. denitrificans is the first system described in which mutagenesis in any complex I core subunit may be combined with quantitative proton-pumping measurements for mechanistic studies.


Assuntos
Trifosfato de Adenosina/metabolismo , Bovinos/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Paracoccus denitrificans/enzimologia , Animais , Transporte de Elétrons , Mitocôndrias/metabolismo , NAD/metabolismo , Oxirredução , Fosforilação Oxidativa , Paracoccus denitrificans/metabolismo , Força Próton-Motriz , Prótons
5.
Hum Mol Genet ; 24(22): 6350-60, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26345448

RESUMO

Dysfunctions in mitochondrial complex I (NADH:ubiquinone oxidoreductase) are both genetically and clinically highly diverse and a major cause of human mitochondrial diseases. The genetic determinants of individual clinical cases are increasingly being described, but how these genetic defects affect complex I on the molecular and cellular level, and have different clinical consequences in different individuals, is little understood. Furthermore, without molecular-level information innocent genetic variants may be misassigned as pathogenic. Here, we have used a yeast model system (Yarrowia lipolytica) to study the molecular consequences of 16 single amino acid substitutions, classified as pathogenic, in the NDUFV1 subunit of complex I. NDUFV1 binds the flavin cofactor that oxidizes NADH and is the site of complex I-mediated reactive oxygen species production. Seven mutations caused loss of complex I expression, suggesting they are detrimental but precluding further study. In two variants complex I was fully assembled but did not contain any flavin, and four mutations led to functionally compromised enzymes. Our study provides a molecular rationale for assignment of all these variants as pathogenic. However, three variants provided complex I that was functionally equivalent to the wild-type enzyme, challenging their assignment as pathogenic. By combining structural, bioinformatic and functional data, a simple scoring system for the initial evaluation of future NDUFV1 variants is proposed. Overall, our results broaden understanding of how mutations in this centrally important core subunit of complex I affect its function and provide a basis for understanding the role of NDUFV1 mutations in mitochondrial dysfunction.


Assuntos
Complexo I de Transporte de Elétrons/metabolismo , Flavinas/metabolismo , NADH Desidrogenase/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Complexo I de Transporte de Elétrons/química , Complexo I de Transporte de Elétrons/genética , Humanos , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Mutação , NADH Desidrogenase/química , NADH Desidrogenase/metabolismo , Ligação Proteica , Subunidades Proteicas , Yarrowia/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...